A benchmark data set for hydrogen combustion

0
  • Bätzner, S. et al. Se(3)-equivariant graphical neural networks for data-efficient and accurate interatomic potentials. arXiv form arXiv:2101.031642021

  • Schuett, KT et al. Equivariant messaging for predicting tensor properties and molecular spectra. arXiv form arXiv:2102.031502021

  • Qiao, Z et al. Unite: Unified n-body tensor equivariant network with applications in quantum chemistry. arXiv form arXiv:2105.146552021

  • Haghighatlanri, M. et al. Newtonnet: A Newtonian network for relaying messages for deep learning of interatomic potentials and forces. arXiv form arXiv:2108.029132021

  • Haghighatlanri, M., et al. Learning chemical predictions: The interplay of feature representation, data, and machine learning methods. chem6 (7): 1527-1542, ISSN 2451-9294. https://doi.org/10.1016/j.chempr.2020.05.014 2020

  • Unke, OT & Meuwly, M. PhysNet: A neural network for predicting energies, forces, dipole moments and partial charges. J.Chem. theory calculation. 15(6), 3678-3693, https://doi.org/10.1021/acs.jctc.9b00181 (2019).

    CAS
    article
    PubMed

    Google Scholar

  • LW Bertels, LB Newcomb, M Alaghemandi, JR Green, and M Head-Gordon. Benchmarking the performance of the ReaxFF reactive force field in hydrogen combustion systems. J.Phys. Chem. A, 124(27), 5631-5645, ISSN 15205215, https://doi.org/10.1021/acs.jpca.0c02734 (2020).

  • Li, J., Zhao, Z., Kazakov, A. & Dryer, F. An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics 36566-575, https://doi.org/10.1002/kin.20026 (2004).

    CAS
    article

    Google Scholar

  • Grambow, C., Pattanaik, L. & Green, W. Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry. scientific data 7137, https://doi.org/10.1038/s41597-020-0460-4 (2020).

    CAS
    article
    PubMed
    PubMed Central

    Google Scholar

  • Behler, J. & Parrinello, M. Generalized neural network representation of high-dimensional potential energy surfaces. physics Rev. Lett. 98146401, https://doi.org/10.1103/PhysRevLett.98.146401 (2007).

    To sue
    CAS
    article
    PubMed

    Google Scholar

  • Smith, JS, Isayev, O. & Roitberg, AE Ani-1: an extensible neural network potential with dft accuracy at force-field computational cost. chemical science 8th(4), 3192-3203 (2017).

    CAS
    article

    Google Scholar

  • St John, P et al. Quantum chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell molecules. scientific data 7244, https://doi.org/10.1038/s41597-020-00588-x (2020).

    CAS
    article

    Google Scholar

  • Margraf, J. & Reuter, K. Systematic enumeration of elementary reaction steps in surface catalysis. ACS Omega 43370-3379, https://doi.org/10.1021/acsomega.8b03200 (2019).

    CAS
    article
    PubMed
    PubMed Central

    Google Scholar

  • Stocker, S., Csányi, G., Reuter, K. & Margraf, J. Machine Learning in the Chemical Reaction Space. nature communication 1110, https://doi.org/10.1038/s41467-020-19267-x (2020).

    CAS
    article

    Google Scholar

  • Gerasimov, G. & Shatalov, O. Kinetic Mechanism of Combustion of Hydrogen-Oxygen Mixtures. Journal of Technical Physics and Thermophysics 86987-995, https://doi.org/10.1007/s10891-013-0919-7 (2013).

    To sue
    CAS
    article

    Google Scholar

  • Simm, G. & Reiher, M. Context-Driven Exploration of Complex Chemical Reaction Networks. Journal of Chemical Theory and Calculation 1309, https://doi.org/10.1021/acs.jctc.7b00945 (2017).

    CAS
    article

    Google Scholar

  • Ulissi, Z., Medford, A., Bligaard, T. & Nørskov, J. To treat the complexity of surface reaction networks using scaling relationships, machine learning, and dft calculations. nature communication 8th14621, https://doi.org/10.1038/ncomms14621 (2017).

    To sue
    article
    PubMed
    PubMed Central

    Google Scholar

  • Zeng, J., Cao, L., Xu, M., Zhu, T. & Zhang, J. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. nature communication 115713, https://doi.org/10.1038/s41467-020-19497-z (2020).

    To sue
    CAS
    article
    PubMed
    PubMed Central

    Google Scholar

  • J Li, Z Zhao, A Kazakov, and FL Dryer. An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 36(10), 566-575, https://doi.org/10.1002/kin.20026 2004

  • Mardirossian, N. & Head-Gordon, M. ωB97X-V: A region-separated 10-parameter hybrid density functional with generalized gradient approximation and nonlocal correlation developed by a survival-of-the-fittest strategy. physics Chem. Chem. Phys. 169904-9924, https://doi.org/10.1039/c3cp54374a (2014).

    CAS
    article
    PubMed

    Google Scholar

  • Van Voorhis, T. & Head-Gordon, M. A geometric approach to direct minimization. Molecular Physics 100(11), 1713–1721, https://doi.org/10.1080/00268970110103642 (2002).

    To sue
    CAS
    article

    Google Scholar

  • Schao, Y et al. Advances in molecular quantum chemistry included in the q-chem 4 program package. Molecular Physics 113(2), 184-215, https://doi.org/10.1080/00268976.2014.952696 (2015).

    To sue
    CAS
    article

    Google Scholar

  • Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the q-chem 5 package. The Journal of Chemical Physics 155(8), 084801 (2021).

    To sue
    CAS
    article

    Google Scholar

  • Behn, A., Zimmerman, P., Bell, A. & Head-Gordon, M. Efficient investigation of reaction pathways via a freeze-string method. The Journal of Chemical Physics 135224108, https://doi.org/10.1063/1.3664901 (2011).

    To sue
    CAS
    article
    PubMed

    Google Scholar

  • Mallikarjun Sharada, S., Zimmerman, P., Bell, A. & Head-Gordon, M. Automated search for transition states without evaluating the Hessian. Journal of Chemical Theory and Calculation 8th5166-5174, https://doi.org/10.1021/ct300659d (2012).

    CAS
    article
    PubMed

    Google Scholar

  • Baker, J. An Algorithm for Locating Transition States. Journal of Computational Chemistry 7385-395 (1986).

    CAS
    article

    Google Scholar

  • T.Verstraelen et al. Iodata: A Python library for reading, writing, and converting computational chemistry file formats and generating input files. Journal of Computational Chemistry42(6): 458-464, https://doi.org/10.1002/jcc.26468. onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26468 2021.

  • Mardirossian, N. & Head-Gordon, M. Thirty years of density functional theory in computational chemistry: a review and comprehensive review of 200 density functionals. Molecular Physics 115(19), 2315-2372, https://doi.org/10.1080/00268976.2017.1333644 (2017).

    To sue
    CAS
    article

    Google Scholar

  • Goerigk, L. et al. A peek into the density functional theory zoo with the expanded GMTKN55 database for general main group thermochemistry, kinetics, and noncovalent interactions. physics Chem. Chem. Phys. 1932184-32215, https://doi.org/10.1039/C7CP04913G (2017).

    CAS
    article
    PubMed

    Google Scholar

  • Guan, X et al. Hydrogen combustion with IRC, AIMD and normal modes. Figshare https://doi.org/10.6084/m9.figshare.19601689 (2022).

  • Share.

    Comments are closed.